Received 8 September 2004

Online 25 September 2004

Accepted 13 September 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Inge Sänger, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.002 Å Disorder in main residue R factor = 0.050 wR factor = 0.144 Data-to-parameter ratio = 10.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Redetermination of *trans*-2,5,7,10-tetraazabicyclo[4.4.0]decane

The structure of the title compound, $C_6H_{14}N_4$, has previously been determined at room temperature by Böttcher, Buchkremer-Hermanns, Hönle & von Schnering [Z. Kristallogr. (1987), **181**, 223–226], who found only one position for the amine H atom. We report here the low-temperature structure of the title compound, showing that the amine H atom is disordered over two positions. This H atom must be located either in the equatorial or in the axial position so that N– $H \cdots N$ hydrogen bonds can be formed. A mirror plane contains the bond that the two rings have in common and a twofold rotation axis runs through the mid-points of all three C-C bonds.

Comment

A perspective view of the title compound, (I), is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, *CONQUEST* Version 1.6 plus three updates; *MOGUL* Version 1.0; Allen, 2002). The molecule possesses crystallographic C_{2h} symmetry. A mirror plane contains the bond that the two rings have in common and a twofold rotation axis runs through the mid-points of all three C-C bonds. As a result, the asymmetric unit comprises a quarter of the molecule.

The structure of (I) has already been determined at room temperature by Böttcher *et al.* (1987). These authors have

Figure 1

Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level. Both positions are shown for each of the disordered H atoms. [Symmetry codes: (i) x, 1 - y, z; (ii) -x, 1 - y, 1 - z; (iii) -x, y, 1 - z.]

 $\ensuremath{\mathbb{C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2 Hydrogen-bond (dashed lines) pattern of the title compound.

located the positions of the H atoms in a ΔF synthesis and refined the H atoms isotropically. They located the amine H atom in an equatorial position. However, they have not reported existence and nature of hydrogen bonds.

We have redetermined the structure at low temperature and have found that the amine H atom is disordered over two positions, either equatorial or axial. If this H atom were located in all molecules at the same position, a short H...H contact to a neighbouring N-H group would arise and no hydrogen bond would be possible. As a result, this H atom must occupy different positions in hydrogen-bonded molecules (Fig. 2).

Experimental

In an attempt to crystallize 'Bu₃SiBr (Wiberg et al., 1997) from CH₃CN, single crystals of the title compound suitable for X-ray diffraction were obtained.

Crystal data

$C_6H_{14}N_4$	$D_x = 1.282 \text{ Mg m}^{-3}$
$M_r = 142.21$	Mo $K\alpha$ radiation
Monoclinic, C2/m	Cell parameters from 2510
a = 5.283 (2) Å	reflections
b = 15.937 (4) Å	$\theta = 4.2–27.7^{\circ}$
c = 4.6205 (18) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 108.78 \ (3)^{\circ}$	T = 173 (2) K
$V = 368.3 (2) \text{ Å}^3$	Rod, colourless
Z = 2	$0.32 \times 0.14 \times 0.13 \text{ mm}$

Data collection

Stoe IPDS-II two-circle diffractometer	362 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.069$
ω scans	$\theta_{\rm max} = 27.8^{\circ}$
Absorption correction: none	$h = -6 \rightarrow 6$
2406 measured reflections	$k = -18 \rightarrow 20$
449 independent reflections	$l = -6 \rightarrow 5$
Refinement	
Refinement on F^2	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.050$	$w = 1/[\sigma^2(F_o^2) + (0.0894P)^2]$
$wR(F^2) = 0.144$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.99	$(\Delta/\sigma)_{\rm max} < 0.001$
449 reflections	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
45 parameters	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

N1-C1	1.4591 (13)	N1-C2	1.4669 (14)
C1 - N1 - C2 $N1^{i} - C1 - N1$	109.91 (10) 108.77 (13)	$N1-C1-C1^{ii}$ $N1-C2-C2^{iii}$	110.25 (10) 111.18 (9)

Symmetry codes: (i) x, 1 - y, z; (ii) -x, 1 - y, 1 - z; (iii) -x, y, 1 - z.

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1'\cdots N1^{iv}$ $N1-H1''\cdots N1^{v}$	0.80 (4) 0.93 (3)	2.36 (4) 2.27 (3)	3.146 (3) 3.182 (3)	167 (3) 168 (2)
Symmetry codes: (iv)	1 - r + 2 - 7	(v) - r + v - 7		

All H atoms were located in a difference map and refined isotropically. The two sites for the disordered H atoms bonded to N1 refined to relative occupancies of 0.54 (4) and 0.46 (4) for the equatorial and axial H atoms, respectively.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Böttcher, P., Buchkremer-Hermanns, H., Hönle, W. & von Schnering, H. G. (1987). Z. Kristallogr. 181, 223-226.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie, (2001. X-AREA.. Stoe & Cie, Darmstadt, Germany.
- Wiberg, N., Amelunxen, K., Lerner, H.-W., Schuster, H., Nöth, H., Krossing, I., Schmidt-Amelunxen, M. & Seifert, T. J. (1997). J. Organomet. Chem. 542, 1 - 18